Circadian clock-specific roles for the light response protein WHITE COLLAR-2.
نویسندگان
چکیده
To understand the role of white collar-2 in the Neurospora circadian clock, we examined alleles of wc-2 thought to encode partially functional proteins. We found that wc-2 allele ER24 contained a conservative mutation in the zinc finger. This mutation results in reduced levels of circadian rhythm-critical clock gene products, frq mRNA and FRQ protein, and in a lengthened period of the circadian clock. In addition, this mutation altered a second canonical property of the clock, temperature compensation: as temperature increased, period length decreased substantially. This temperature compensation defect correlated with a temperature-dependent increase in overall FRQ protein levels, with the relative increase being greater in wc-2 (ER24) than in wild type, while overall frq mRNA levels were largely unaltered by temperature. We suggest that this temperature-dependent increase in FRQ levels partially rescues the lowered levels of FRQ resulting from the wc-2 (ER24) defect, yielding a shorter period at higher temperatures. Thus, normal activity of the essential clock component WC-2, a positive regulator of frq, is critical for establishing period length and temperature compensation in this circadian system.
منابع مشابه
Light and clock expression of the Neurospora clock gene frequency is differentially driven by but dependent on WHITE COLLAR-2.
Visible light is thought to reset the Neurospora circadian clock by acting through heterodimers of the WHITE COLLAR-1 and WHITE COLLAR-2 proteins to induce transcription of the frequency gene. To characterize this photic entrainment we examined frq expression in constant light, under which condition the mRNA and protein of this clock gene were strongly induced. In continuous illumination FRQ ac...
متن کاملPAS domain-mediated WC-1/WC-2 interaction is essential for maintaining the steady-state level of WC-1 and the function of both proteins in circadian clock and light responses of Neurospora.
In the frq-wc-based circadian feedback loops of Neurospora, two PAS domain-containing transcription factors, WHITE COLLAR-1 (WC-1) and WC-2, form heterodimeric complexes that activate the transcription of frequency (frq). FRQ serves two roles in these feedback loops: repressing its own transcription by interacting with the WC complex and positively upregulating the levels of WC-1 and WC-2 prote...
متن کاملRoles for WHITE COLLAR-1 in circadian and general photoperception in Neurospora crassa.
The transcription factors WHITE COLLAR-1 (WC-1) and WHITE COLLAR-2 (WC-2) interact to form a heterodimeric complex (WCC) that is essential for most of the light-mediated processes in Neurospora crassa. WCC also plays a distinct non-light-related role as the transcriptional activator in the FREQUENCY (FRQ)/WCC feedback loop that is central to the N. crassa circadian system. Although an activator...
متن کاملThe Ccr4-not protein complex regulates the phase of the Neurospora circadian clock by controlling white collar protein stability and activity.
In the Neurospora circadian negative feedback loop, white collar 1 (WC-1) and WC-2 form the WC complex that activates frequency (frq) transcription. Here we show that Not1 is a WC-interacting protein and is important for maintaining WC levels. The not1 transcript displays a circadian oscillation with a similar phase as frq. Down-regulation of not1 leads to low levels of WC-1 and WC-2 and a dela...
متن کاملThe neurospora circadian system.
The eukaryotic filamentous fungus Neurospora crassa has proven to be a durable and dependable model system for the analysis of the cellular and molecular bases of circadian rhythms. Pioneering genetic analyses identified clock genes, and beginning with the cloning of frequency (frq), work over the past 2 decades has revealed the molecular basis of a core circadian clock feedback loop that has i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular and cellular biology
دوره 21 8 شماره
صفحات -
تاریخ انتشار 2001